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Multiple-boundary-reflection effects on Friedel 
oscillatory phenomena in a quantising magnetic field 

N J M Horingt, S Silverman?§ and Godfrey Gumbst 
t Department of Physics and Engineering Physics, Stevens Institute of Technology, 
Hoboken, New Jersey 07030, USA 
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Abstract. We examine the effects on Friedel oscillations of multiple boundary reflections of 
electron wavefunctions confined to a plasma slab. The bounding surface is simulated by two 
infinite-barrier planar boundaries in the presence of a normal quantising magnetic field. To 
exhibit such Friedel oscillatory features in the presence of multiple boundary reflections, 
we determine the free-electron density perturbation response function of a finite slab of 
degenerate Landau quantised plasma in a re,al-space representation explicitly. In  this we 
employ an appropriate superposition of infinite-space-image Green functions to impose the 
boundary condition of specular reflection of e{ectrons at the slab faces. The magnetic field 
is applied perpendicular to the boundary planes. Our real-space results for the static limit of 
the free-electron density perturbation response function in a magnetic field are evaluated in 
the quantum strong-field limit, as well as in low/intermediate magnetic fields, and de Haas- 
van Alphen oscillatory terms are also exhibited. Manifestations of the role of multiple 
boundary reflections in Friedel oscillatory phenomena are clearly evident in these results. 

1. Introduction 

Friedel oscillatory screening phenomena have long been the focus of considerable 
interest in degenerate solid state plasmas, both in the absence and presence of an external 
magnetic field [l]. Moreover, the introduction of a boundary generates a perturbation 
which induces a Friedel oscillatory density/potential response of the quantum plasma, 
particularly in the direction parallel to a quantising magnetic field normal to the planar 
surface. The time-independent static limit of such a response for a semi-infinite quantum 
plasma has been examined for arbitrary magnetic field strength by Glasser, Geldart and 
Gumbs [2], and for null magnetic field by Rudnick [3]. We shall examine the effects on 
Friedel oscillations of multiple boundary reflections of electron wavefunctions confined 
to a plasma slab by two infinite-barrier planar bounding surfaces in a normal quantising 
magnetic field. To exhibit such Friedel oscillatory features in the presence of multiple 
boundary reflections, we determine the free electron density perturbation response of 
a finite slab of degenerate Landau quantised plasma in a real space representation 
explicitly. To facilitate this analysis we employ a superposition of properly positioned 
infinite-space image Green’s functions to impose the boundary condition of specular 
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reflection of electrons at the slab faces. In this, we focus attention on the nonlocal density 
perturbation response function R(1,2) = 6p(1)/6V(2) where p(1) is the perturbed 
density at space time point 1 = r l ,  t l  generated by the effective potential V(2). Alterna- 
tively expressed, 

p(1) = 1 d4(1')  R( l l ' )V( l ' )  

and it is immediately evident that the model potential V(1') = 6(3) (r ;  - r2)e-"'i 
induces the density perturbation as R(rl ,  r2; Q )  at the driving frequency (that is, p(1) = 
R ( r l ,  r2 ;  Q)e-'"'l), so R is appropriate as a vehicle for the description of Friedel oscil- 
latory phenomenon in density response subject to multiple boundary reflections in a 
magnetic field. In this analysis of the density response, we employ the free electron 
ring diagram R(1,2) = -G(l2)G(2l t ) ,  where G(12) is the equilibrium one-electron 
thermodynamic Green's function in the absence of interparticle interactions, and for 
the finite slab z = 0 + d the boundary condition of specular reflection must be imposed 
such that 1312) vanishes for z1 = 0, d and z 2  = 0, d. The resulting time-dependent free 
electron slab density perturbation response function R(12) in magnetic field was first 
reported in a momentum space representation by Horing and Yildiz [l]. In order to gain 
an appreciation of the effects of multiple boundary reflections on Friedel oscillatory 
phenomena we shall determine p (  1) - R(r l ,  r 2 )  in areal space representation explicitly. 
The appropriate Green's function for electrons subject to the boundary condition of 
specular reflection at the slab faces has been expressed as a superposition of infinite 
space Green's functions G,( 1,2)  in the literature [4], and it has the property of vanishing 
at the slab faces along with the electron wavefunctions: 

5 

G(r,t l ,  r2 t2)  = 2 [G , (R ,  zl, 2nd + z 2 ;  T) - G,(R, z l ,  2nd - z 2 ;  T)] (1) * =  --r 

whereT= t l  - t2andR = ?- F2 = (xl - x 2 , y 1  - y 2 ) .  R(12)maybewritteninfrequency 
S2 representation as 

dTe- i (R- is )TG> ( r l ,  r 2 ;  T)G< (r2m r l l  -T) 

where Gs is given in terms of Gz as in ( l ) ,  and the magnetic-field-dependent infinite- 
space thermodynamic Green function GZ is obtained as [ 5 ]  (h  = 1) 

e -ip oHo3T' 1 2m* m*w, 
x d T' eiwT' ~ - 

(2n1/2)3 ( iT' 1 i sin(wCT'/2) 

The notation of [5] is generally maintained here. (( = chemical potential = Fermi 
energy for zero temperature, fo(w)  = Fermi-Diracdistributionfunction, p o ,  p$ = spin, 
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orbital Bohr magneton, H = magnetic field, o3 = Pauli spin matrix No 3, m* = effective 
mass of the electron, w, = cyclotron frequency eH/m*c.) Also 

C(rl, r J  = exp[i(Berl - H X r2 - q ( r l  ) + q ( r 2 ) ) ]  

for arbitrary gauge function q ( r ) .  

R(rl, r2; a )  at zero temperature may be obtained using (3) as follows: 
After some straightforward but lengthy manipulations, the result of (2) for 

i = + b  -eSE(s-li ds d u  cosh(&$) I 2x1 uu’ sinh(su) sinh(su’) 
R(r1,r2;Q) = -2(p ;H)’ (m*/2~)~  

- i x + b  

sur 
x exp[ - _(a+ is)]exp{ -a[coth(su) + coth(~u’)] l?~]  

P 6  H 

x{exp[-a(zl -2md-z2)2/su’]  -exp[-a(t, -2md+z2)’/su’]}) (4) 

where the s-integration is performed over the standard inverse Laplace transform 
contour; U’ = 1 - U ;  E = c / p $ H ;  a is the effective mass in units of the electron mass 
and a = m * p; H/2. In this study of Friedel oscillatory phenomena with multiple bound- 
ary reflections in various regimes of magnetic field.strength, we examine the static limit 
of (4), !2+ 0, henceforth. Here, we distinguish two classes of terms in the density 
perturbation response function on the basis of their roles in the associated electrostatic 
polarisability of the finite slab plasma. Those terms which correspond to the plasma 
having bulk polarisation properties uniformly throughout the slab, subject to elec- 
trostatic joining conditions [6] across the slab boundaries on either side [7-121, are 
termed ‘classical’ and bear the subscript ‘cl’. It should be noted that this is somewhat of 
a misnomer since the bulk properties presumed to uniformly permeate the slab in this 
class of terms do in general involve infinite space quantum effects. Other quantum 
effects associated with the vanishing of wavefunctions, Green’s functions and density at 
the slab boundaries (by which the boundaries induce spatially inhomogeneous modi- 
fications of the polarisability in the slab, so that it is not in fact uniform throughout the 
slab), are excluded from the ‘classical’ terms, and the remaining terms involving such 
effects are termed ‘quantum interference’ terms [13-141, bearing the subscript ‘QI’. In 
total, R = R,, + Ror. 

2. Low magnetic field strength 

For low magnetic fields, 5 + 1, we develop the monotonic dependence of 
R(r l ,  r,; !2 = 0) in a series of inverse powers of 5;  R = R(0) + (R(Ia) + R(lb))g-, + . . . 
The execution of the s- and u-integrals (using the integrals tabulated in the Appendix, 
and noting the U * U’ symmetry) leads to results for the ‘classical (cl) and ‘quantum 
interference’ (QI) parts as follows: 

~ l ( ~ ) = ( ~ l , Y l , z l  + 2 n 4  = ( x l , Y l , ~ l ( n ) )  = ( h Y 1 ,  - Z l ( 4 )  

R1.2, = r l  - r 2 h )  = r l  - r;(n)  
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( 6 4  

Here kF = (2m* <)'I2 also has magnetic field dependence, Si(x) denotes the sine integral 
function andjl(x) is a spherical Bessel function. qo(a, /3) is defined and evaluated in the 
Appendix along with some other related integrals. Conventional notation is employed 
for the various special functions encountered [15]. Details of the integrations involved 
will be presented elsewhere [ 161 (see [2], Appendix). 

3. Intermediate magnetic field strength 

The de Haas-van Alphen (DHVA) oscillatory parts of R which are characteristic of 
intermediate magnetic field strengths may be obtained from (4) by using a Laurent series 
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expansion to represent the isolated essential singularities of the s-integrand at s1 = 
lni/u, lni/u’ to execute the s-integral in closed form. The u-integral has also been 
performed, and for a = 1 (spin splitting the same as Landau level separation) and 5 9 1 
(5‘ % oc), we obtain the de Haas-van Alphen oscillatory part of R as RZHVA + RBFVA, 
where 

4. Quantum strong-field limit 

For the quantum strong-field limit, in which all electrons are confined to the lowest 
Landau eigenstate with 5 < 1, the exponents of (4) may be simplified noting that 
coth(su) + 1, etc., and the s- and u-integrals are readily carried out with the result 
R = R3SF + R8fF where ( E ’  = l j  + a - 1, kk = 2(a5’)’/’) 

RSSF(rl, r2; Q = 0) = ( , ~ $ H ) ~ ( m * / n ) ~  e-2aR2 2 2 
m= --z n =  --z 

5. Conclusions 

The results presented above explicitly exhibit the effects of multiple boundary reflections 
of electron wavefunctions on Friedel density oscillations in various regimes of quantising 
magnetic field strength. Our analysis of the density perturbation p(1) = R(rl, r2; 
Q)e-iP‘l in the static limit R + 0 incorporates both ‘classical’ and ‘quantum interference’ 
contributions due to interference between incoming and reflected electron waves at 
interfaces. Multiple-boundary-reflection effects arise here directly from the super- 
position of a series of infinite-space-image Green’s functions to impose the boundary 
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condition of specular reflection (infinite barrier model) at the two faces of the infinite- 
width slab, film or quantum well. 

Our use of closed-form integral representations, for both the magnetic field Green's 
function and for the Landau quantised electron density perturbation response function 
R(1,2) in real-space representation (mainly in the degenerate case) have completely 
circumvented explicit reference to sums over Landau levels: The attendant Landau 
state matrix elements have been effectively evaluated explicitly in our work. Multiple- 
boundary-reflection effects in Friedel density oscillations have been determined 
explicitly here for low-intermediate magnetic field strengths, exhibiting de Haas-van 
Alphen oscillatory behaviour, and for the quantum strong field limit (all electrons in 
lowest Landau state). These results provide a convenient basis for a further analysis of 
the Friedel oscillation of static shielding of an arbitrary impressed potential subject to 
multiple-boundary-reflection effects at the two bounding surfaces of a solid state plasma 
in a quantising magnetic field. Moreover, this work concerning the density perturbation 
response function will be useful in the determination of the indirect-exchange RKKY 
interaction energy between two spins coupled via hyperfine interaction mediated by the 
conduction electrons of a finite metal film in a magnetic field [ 171. The use of Mossbauer 
spectroscopy to measure hyperfine fields in bulk samples is well established. Its appli- 
cation to thin films should permit a measurement of the RKKY interaction which may be 
readily predicted from this work as a function of magnetic field strength, including the 
role of all multiple-wave-function reflections from the two film boundaries. 
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Appendix 

The following list of integrals and formulas is recorded here for the reader's convenience. 



Friedel oscillatory phenomena in a quantising magnetic field 10531 

References 

[ l ]  Horing N J M and Yildiz M 1976 Surface Plasmon Dispersion Relation in Quantizing Magnetic Field in 
Proc. 13th Int. Conf. Physics of Semiconducturs (Rome) I976 ed. F G Fumi (Amsterdam: North- 
Holland) p 1129 

(b) Horing N J M and Yildiz M 1985 Phys. Reu. B 33 3895 
[2] Glasser M L, Geldart D J W and Gumbs G 1984 Phys. Reu. B 29 6468 
[3] Rudnick J 1972 Phys. Reu. B 5 2863 
[4] Horing N J M and Yildiz M 1976 Landau Quantization Effects on the Friedel Density Oscillation Near a 

Bounding Surface and the Thermodynamic Green's Function of a Finite Slab of Semiconductor 
Plasma, in Proc. Int. Conf. on the Application of High Magnetic Fields in Semiconductor Physics, 
Wiirzburg, Germany, ed. G Landwehr, Pub. Physikalisches Institut der Universitat Wiirzburg, p. 572 

[5] Horing N J M (1965) Ann. Phys. NY 31 1 
[6] Garcia-Moliner FAnn.  Phys., Paris 2 179-200 
[7] Platzman P M and Wolff P A 1973 Solid State Phys. Suppl. 191-203 
[8] Platzman P M and Buchsbaum S J 1963 Phys. Reu. 132 2 
[9] Baraff G A 1968 Phys. Reu. 167 625; 1968 Phys. Reu. 178 1155; 1969 Phys. Reu. 187 851 

[lo] Gantmakher V F and Kaner E A 1965 Sou. Phys.-JETPZl 1053 
[ l l ]  Prange R E ,  Nee T W 1968 Phys. Reu. 168 779 
[12] Weisbuch G and Libchaber A 1967 Phys. Reu. Lett. 19 498 
[13] Beck D E 1971 Phys. Reu. B 4 1555 
[14] Zaremba E and Griffin A 1975 Can. J. Phys. 53 891 
[15] Gradshteyn I S and Ryzhik I M 1965 Tables of Integrals, Series and Products (New York: Academic) 
[16] Glasser M L unpublished (see Ref. 2 Appendix) 
[17] The corresponding analysis for a semi-infinite solid state plasma has been examined by 

Gumbs G and Glasser M L 1986 Phys. Reu. B 33 6739 


